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Abstract. The contribution of the σ meson exchange to the pionic double charge exchange (DCX) reaction
is investigated. A concrete calculation on the forward excitation function of the low energy DCX reaction
14C(π+, π−)14O has been performed. It shows that the contribution of the σ meson exchange can reproduce
well the resonance like excitation function of low energy DCX reaction.

PACS. 25.80.Gn Pion charge-exchange reactions – 13.75.Gx Pion-baryon interactions

Pion-nucleus double charge exchange (DCX) reaction in-
volves at least two nucleons and therefore is an ideal place
for studying N-N correlation. It has then achieved a great
deal successes in both experimental and theoretical inves-
tigations(see for example [1,2]). However, it is still an open
question to explain the resonance like excitation function
at low energies around Tπ = 50 MeV. On one hand, it is
believed to come from the dibaryon (d′) resonance [3]. On
the other hand, with conventional mechanisms such as the
improved coupled channel scattering theory with many
low-lying state effect being included[4], the scheme with
pion distortion being treated sophisticatedly[5] and the
true pion absorption-emission mechanism[6], it can also
be described. In this paper we will propose an alternative
scheme to describe the excitation function of low energy
DCX reaction.

Considering the meson exchange theory for N-N inter-
action, one knows that the pion exchange gives the largest
range force; the π− π S-wave (σ ) exchange gives the sec-
ond largest range force; then the ρ exchange and so on. It
has been shown that including σ exchange is crucial for
reproducing the medium range attractive potential for N-
N interaction[7] and for reproducing the cross section of
pp→ ppπ0 near threshold[8]. For DCX reactions, the con-
tribution of the ρ exchange has been investigated in the
same framework as for the π exchange[9] and found that it
is not negligible for Tπ around 50 MeV. However there has
not yet been any report on the contribution of σ exchange.

a corresponding author

The reason for this may be that the the σ resonance was
not regarded as an established resonance at that time. In
the last few years, as the knowledge on the low energy
π − π S-wave resonance has been much improved[10, 11],
the existence of a broad σ resonance (i.e., f0(400− 1200)
in the PDG booklet) has been well established[11]. There-
fore it is necessary to investigate the contribution of the
σ meson exchange for DCX. Due to the fact that the σ
exchange between two nucleons contributes an attractive
force, the understanding on the contribution of σ exchange
is very important for identifying other short range contri-
butions such as the six-quark clusters[12, 13] and dibaryon
resonance[3]. We will then investigate the contribution of
σ exchange to the pionic double charge exchange reaction
and discuss the excitation function of the DCX process
14C(π+, π−)14O.

It has been shown that the fixed scattering center
technique[14] is quite powerful in describing the pion-
nuclear reactions (see for example [9] and references
therein). Under the second order approximation of scat-
tering theory with fixed scattering center, the position of
every nucleon in the target nucleus is fixed in the DCX
process. Let ~r1, ~r2 denote the coordinate of the two nucle-
ons in the two sequential scattering processes, the effective
reaction amplitude operator contributed by exchanging a
σ meson can be written as

F̂ ( ~kf , ~ki, ~r2, ~r1) = − 1
2π2

e−i
~kf ·~r2 (1)

×
∫
d3qf2( ~kf , ~q)gσ(~q, ~r)f1(~q, ~ki)ei

~ki·~r1 ,
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where ~r = ~r2− ~r1, ~ki and ~kf are the incoming and outgoing
momenta of the pion, rescpetively. The propagator gσ of
the σ meson is

gσ(~q, ~r) =
ei~q·~r

~k0

2 − ~q2 + iε
, (2)

where k0 is the on-shell momentum of σ meson. The
f1(~q, ~ki) and f2( ~kf , ~q) are the scattering amplitudes of the
process π+n→ pσ and σn→ pπ− respectively. When the
following π −N pseudo-vector coupling and σ −N scalar
coupling Lagrangians are considered

LπNN = −gπNN Ψ̄Nγ5(i~τ · ~π)Ψ, (3)

LσNN = −gσNN Ψ̄ΦΨ, (4)

the scattering amplitudes in experimental frame can be
given as

f2( ~kf , ~q) =
√

2
4π

gπNNgσNN
1
ωkf

~σ2 · ~kf
2mN

, (5)

f1(~q, ~ki) =
√

2
4π

gπNNgσNN
1
ωki

~σ1 · ~ki
2mN

. (6)

Accomplishing the angular integration in (1) with (2), (5)
and (6) being included, the effective reaction amplitude
operator can be simplified as

F̂ ( ~kf , ~ki, ~r2, ~r1) = e−i
~kf ·~RD̂( ~kf , ~ki, ~r)ei

~ki·~R, (7)

where ~R = 1
2 (~r1 + ~r2) is the coordinate of the center-

of-mass of the two nucleons and the contribution of the
relative motion is

D̂( ~kf , ~ki, ~r) = Ce−i
~k·~r ~σ2 · ~ef ~σ1 · ~eiH(r), (8)

where ~K = ~kf − ~ki, ~ei = ~ki
ki

, ~ef =
~kf
kf

and

C = − g2
πNNg

2
σNN

16π3m3
Nωkiωkf

kfkik
2
0, (9)

H(r) =
mN

k2
0

∫
q2dq

1
k2

0 − q2 + iε
j0(qr). (10)

Denoting |(n1l1j1, n2l2j2)J+〉 , |(n3l3j3, n4l4j3)J+〉 as
the wave functions of the initial and final state with the
two valence nucleons respectively and ψi(π+), ψf (π−) as
that of the incoming and outgoing pion, the reaction am-
plitude can be given as

F ( ~kf , ~ki) =
〈

(n3l3j3, n4l4j4)J+ψf (π−)
∣∣∣D̂( ~kf , ~ki, ~r, )

∣∣∣
(n1l1j1, n2l2j2)J+ψi(π+)

〉
. (11)

With the wave function of the pion being taken as the
solution of the Klein-Gorden equation

(∇2 + U (±))ψπ±(~R) = k2
0ψπ±(~R), (12)

where U (±) is the optical potential of π±-nucleus elastic
scattering, the distortion effect of the external pion, which
has been shown to play an important role in the DCX
process[5, 6], is taken into account.

After a tedious derivation, we get the reaction ampli-
tude as

F ( ~kf , ~ki) =
∑
λS

 l1 1
2 j1

l2
1
2 j2

λ S J

 ∑
nlNL

Mλ(nlNL, n1l1n2l2)

×
∑
λ′

 l3 1
2 j3

l4
1
2 j4

λ′ S J


×

∑
n′l′N ′L′

Mλ′(n′l′N ′L′, n3l3n4l4)

×
∑
M

AR(N ′L′NLM)

×
∑
m

[
C
λ(m+M)
lmLM C

λ′(m+M)
l′mL′M Vr(n′l′, nl,m)

×
∑
µ

(−1)1−µCJMJ

λ(m+M)SµC
JMJ

λ′(m+M)Sµ

]
(13)

where CLMlml′m′ is the Clebsch-Gordan (C-G) coefficient
Mλ(nlNL, n1l1n2l2) is the Talmi transformation coeffi-
cient. The AR(N ′L′NLM) and Vr(n′l′nlm) are given as

AR(N ′L′NLM) =
〈
φN ′L′M (

√
2~R)

∣∣∣Ψ∗π−(~R)Ψπ+(~R)∣∣∣φNLM (
√

2~R)
〉
, (14)

Vr(n′l′nlm) ≡ C
√

(2l + 1)(2l′ + 1)(−1)m

×
∞∑
λ=0

iλfn′l′nlλC
λ0
l0l′0C

λ0
l−ml′m , (15)

with

fn′l′nlλ ≡
〈
Rn′l′(

r√
2

)
∣∣∣∣ jλ(kr)H(r)

∣∣∣∣Rnl( r√
2

)
〉
. (16)

where jλ is the λ-order Bessel function, and Rnl is the
radial wave function of the nucleon.

Since the excitation function at forward angle (about
zero degree) of pionic DCX reaction is now a challeng-
ing topic with which the mode of short range correla-
tion between nucleons may be identified, we investigate
the contribution of the σ exchange to the excitation func-
tion of pionic DCX. On the other hand, the DCX reaction
14C(π+, π−)14O is, on the side of nuclear structure, the
simplest DCX process and its angular distribution and
excitation function have been discussed a lot[4, 5, 15, 16]
in the conventional scheme without including the σ ex-
change. We then take the DCX process 14C(π+, π−)14O
as an example to investigate the effect of the σ exchange on
the excitation function at forward angle. For the forward
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angle (about 0◦) process, ~kf = ~ki. ~k0 in the propagator of
the σ meson (2) is then the on-shell momentum of the σ
meson which holds the energy-momentum relation

~k0

2
= ω2

σ −m2
σ, (17)

where mσ and ωσ are the mass and energy of σ meson
respectively. The value of ωσ is decided by energy conser-
vation in the process π+n→ pσ. Under the approximation
of fixed scattering center, the energy of nucleon is approxi-
mately unchanged, i.e., Ep ≈ En. Therefore, it is got from
energy conservation that

ωσ = ωπ(ki) + En − Ep
≈ ωπ(ki). (18)

Substituting Eq.(18) into Eq.(17), the value of k0 can be
obtained

~k0

2
= ω2

π(ki)−m2
σ

= ~ki
2

+m2
π −m2

σ. (19)

Because the incident energy of the pion is in the range
20 ∼ 300 MeV, i.e., ki = 20 ∼ 300 MeV and mπ = 139
MeV andmσ = 520 MeV[17], we have ~k0

2
< 0. This means

that σ exchange in the intermediate states is just a virtual
process in contrast to the real process of π exchange. As
well known, the destructive interference of isovector s- and
p-waves in the πN -system causes the SCX cross section to
undergo a deep minimum near Tπ ' 50 MeV. From this
point of view, one may speculate that σ exchange may
play an important role in pionic DCX.

As in [9,15,16], we take the wave function of the 14C
as∣∣14C(gs)

〉
= 0.404

∣∣(0p3/2)200
〉
+0.915

∣∣(0p1/2)200
〉
. (20)

Then we calculated the forward differential cross sec-
tions dσ

dΩ (0◦) for the double analog transition process
14C(π+, π−)14O with incident pion energy in the range
ki = 0 ∼ 300 MeV. In the calculation the coupling con-
stants are taken as g2

πNN

4π = 14.4 and g2
σNN

4π = 7.303 [17].
The calculated result and comparison with experimen-
tal data[18] are shown in Fig.1. The figure shows that
the experimental excitation function of the DCX reaction
14C(π+, π−)14O in the range Tπ = 20 ∼ 80 MeV is re-
produced very well. The contribution of the σ exchange
mechanism is small in ∆(3, 3) resonance region where the
conventional sequential mechanism with the ∆ resonances
is dominant.

Comparing with the previous calculations, the present
result of the excitation function of 14C(π+, π−)14O
around Tπ = 50 MeV agrees with experimental data at the
same precision as that of the d′ resonance mechanism[3]
and better than other conventional mechanisms[4 −
6, 15, 16]. It indicates that the σ exchange effect is very
important in reproducing the excitation function of pio-
nic DCX reaction at low energy.

In summary we have investigated the effect of the σ
exchange on the excitation function of DCX reaction at

Fig. 1. Calculated result of the excitation function of the DCX
reaction 14C(π+, π−)14O and the comparison with experimen-
tal data (taken from [18])

low energy. The calculated result of the excitation function
at forward angle of the DCX reaction 14C(π+, π−)14O
in the energy range up to 80 MeV agrees well with the
experimental data. The σ exchange mechanism reproduces
the resonance like excitation function of low energy DCX
reaction as well as the d′ resonance mechanism.
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